SU04 定高避障模块

V1.0.3

前言:

SU04 是个超声波收发一体的测距模块,用于 Pixhawk 飞控的全向避障和定高。 模块可以实现 pixhawk 水平 8 个方向的避障、向上防撞、向下的定高等功能。模 块的测距范围为 40cm~450cm。飞控可以同时支持 3 个模块一起连接飞控,3 个 模块连接口分别为 telem1、telem2、i2c 口。

功能一:避障

1. 固件支持

MINIPIX 固件: 直接用我们乐迪的 MP 地面站刷最新固件(即 V3.5.5 以上的固件)即可

PIXHAWK 固件: 直接从 MP 刷 V3.6 以上的固件即可(注意:不支持 3.5 以下的固件)

刷固件后,之前功能不变,参数不会被改变,也不需重新校准

2. 安装模块

使用模块时,飞控不能通过 USB 供电,需要通过电池供电!!! 2.1 连接 PIXHAWK

用 6pin 的线连接飞控的 telem 口,另一端连接模块。如下图所示:

2.2 连接 MINIPIX

用只有 3 条连接线的 4Pin 对 6pin 的线, 4pin 端连接模块, 6pin 端连接飞控, 如下图所示

3. 配置说明

3.1 模块选择(pixhawk 支持 4 种避障模块,下面通过设置 PRX_TYPE 的值来选择 本模块作为避障模块)

具体设置:进入-配置/调试界面,点击左侧-全部参数表,在右下角-输入框中输入 PRX_TYPE (避障模块类型)并且按 Enter 键,即可搜索到该参数,将该参数 的值左键双击,设置为 2 (即选择本模块,因为本模块通过 telem 口的 mavlink 协议与飞控通信),再点击右侧的-写入参数即可,如图所示:

3.2 设置避障距离和打开避障

- 1)模块的避障距离可通过改变 AVOID_DIST_MAX、AVOID_MARGIN 这两个值来设置 AVOID_DIST_MAX: 定高模式下的最大避障距离,单位 m AVOID_MARGIN: 留待模式下的最大避障距离,单位 m
- 2)避障功能的打开/关闭通过改变 AVOID_ENABLE 值来设置 AVOID_ENABLE: 避障功能的打开和关闭,2打开、0关闭

3)具体设置

进入-配置/调试界面,点击左侧-全部参数树,左击 AVOID,会出现上面三个参数。 分别将参数左键点击,设置为AVOID_DIST_MAX的值为3(即 3m,有效值为3~4.5)、 AVOID_ENABLE 的值为2(使能避障,0为关闭避障)、AVOID_MARGIN 的值为3 (即 3m,有效值为1~10),再点击右侧的-写入参数即可,如下图所示:

高级参数 全部参数表 全部参数树	ANGLE_MAX	4500	Maximum lean angle in all flight modes
Planner	AVD_ENABLE AVOID AVOID_ANGLE_MAX	0	Enable Avoidance using ADSB Max lean angle used to avoid obstacles while in non-GFS modes
	AVOID_DIST_MAX AVOID_ENABLE AVOID_MARGIN H BATT B BATT2 N STV		Distance from object at which obstacle avoidance will begin in non-GFS modes Enabled/disable stopping at fence Vehicle will attempt to stay at least this distance (in meters) from objects while in GFS modes

3.3 设置遥控器打开和关闭避障功能(可选)

1)此项是可选项,可跳过

飞控默认在定高模式和留待模式下,避障功能自动打开,切回自稳时,避障功能 自动关闭。但是如果想实时通过遥控器来开启或关闭避障功能,需要进行此项设 置。如果想只在定高和留待模式下,自动开启避障功能,可以跳过此项设置。

2)飞控设置 CH7_OPT 参数。

进入-配置/调试界面,点击左侧-全部参数表,在右下角-输入框中输入 CH7_OPT 并且按 Enter 键,即可搜索到该参数,将该参数的值左键双击,设置为 40 (物体 避障功能),再点击右侧的-写入参数即可,如下图所示

3)遥控器设置

选择一个二挡开关作为控制 7 通道的开关,在地面站的初始设置界面下的必要硬件的下拉列表中,左击故障保护,打开即可显示 7 通道的 PWM 值的界面,当拨动该开关时,7 通道的 PWM 值大于 1800,代表开关拨动到该位置时,避障功能打开,拨动到另一个方向时,7 通道的 PWM 值小于 1200,避障功能关闭。如下图所示

4. 数据查看

官方的最新版本地面站显示数据不正常,需要通过我们 minipix 专用的地面站来查看数据,下载链接如下:

http://www.radiolink.com.cn/firmware/MissionPlanner/MissionPlanner-1.3.49.6.exe

在完成以上配置之后,就可以查看模块的数据,断开 Pixhawk 重新启动 Mission Planner,在 Mission Planner 地面站连接时会自动启动一个新的界面,该 界面可以查看模块的数据状态(如果不出现该界面,需要点击桌面任务栏下该界 面的图标),如图所示

当查看距离数据,地面站弹出多个距离显示窗口时,需要关闭其他的距离显示窗口,可以保留一个实时变换的窗口即可。该现象为地面站软件在显示实时距 离窗口时有故障,这个故障在之后的地面站版本更新会改进。

5. 飞行模式

在 Pixhawk 配置完成并且超声波避障定高模块数据正常输出后,需要设置必要的 飞行模式,最基本的模式为 1: Stabilize(自稳) 2: AltHold(定高) 3: Loiter (悬停),如图所示

-						
Mission Planner For Radio	olink 1.3.49.6 APM:	Copter V3.5.5 (27229c83)			and And Married States, inc.	
TAKE CARE	*)			
	븰	i前模式: Stabilize(自稳)				
向导	<u></u>	前 PWM: 5:0			THE 0 1000	
、心亜硬性	飞行模式 1	Stabilize(自稳)	🔹 🔲 简单模式	🔲 超简单模式	PWM U - 123U	
22.25 吸口	飞行模式 2	Loiter(留待)	🗸 🔲 简单模式	📄 超简单模式	PWM 1231 - 1360	
机架类型	飞行模式 3	AltHold(定高)	📮 🔲 简单模式	🔄 超简单模式	PWM 1361 - 1490	
加速度计校准	飞行模式 4		🗸 🔲 简单模式	🥅 超简单模式	PWM 1491 - 1620	
指南针	飞行模式 5		🗸 🔳 简单模式	🥅 超简单模式	PWM 1621 - 1749	
译控器构准	飞行模式 6	Stabilize(自稳)	🔹 🔲 简单模式	🔲 超简单模式	PWM 1750 +	
		保友描述		简单和超简单模式介绍		
ESC Calibration		ITTTXI				
飞行模式						
故障保护						
>> 可选硬件						
RTK/GPS Inject						
の水中台(料井)						

6. 实际飞行

在 Pixhawk 配置完以上所有步骤后,请务必重启 Pixhawk 飞控再次检查,以上参数是否正确配置,否则有参数未配置成功都有可能造成避障失败,切记!

在确认 Pixhawk 正确配置所有参数之后,首次飞行,就可以找一个带有墙壁 等障碍且比较宽阔的地点实机测试,飞行常用的顺序应该是:

1)给飞行器上电,等待 Pixhawk 飞控蓝灯闪烁,则表示飞控已经初始化完成

- 2)等待 Pixhawk 飞控蓝灯闪烁时,即可长按安全开关,直到 Pixhawk 安全开关红灯 常亮,则表示安全开关打开完毕
- 3)使用遥控解锁,飞控解锁成功后,飞行器电机会开始转动,此时缓慢推动油门, 飞行器起飞后,将飞行模式设置为 Loiter(悬停)模式,
- 4)拨动遥控第7通道(或第8通道,根据之前设置来定),开启避障功能,推动摇 杆将飞行器控制向前飞行至接近墙壁障碍,飞行器会自动根据前方障碍的距离来 控制速度并停止在距离障碍3米左右的位置,如果由于速度太快或者惯性作用飞 行器距离障碍小于3米,飞行器会自主退回至距离障碍3米左右的位置。

7. 注意事项

- 1)使用模块时, pixhawk 不能通过 USB 供电,需要通过电池供电,否则 USB 供电时 造成飞控启动时间较长,模块数据不能正常通讯!!!
- 2) 第一次飞行,请控制飞行器在较低的速度下飞行,以免操作不当造成撞机。
- 3)在 Pixhawk 飞控 AltHold (定高)模式下, 飞机的反应和悬停模式不一样,飞机遇到障碍物时,倾斜的角度会和遥控的 pitch 和 roll 进行融合,再做最后反应,所以在全速前进时,可能会出现来不及刹车! 悬停模式下,飞机在遇到障碍物时,会停止前进,不管遥控器前进的 pitch 和 roll 有多大,因此,水平避障功能需要在悬停模式下进行。
- 4)模块可以实现水平8个方向的避障,需要通过模块的按键来改变模块的方向。模块默认的方向是向前,当每按一次按键,模块的方向顺时针改变一次,并且模块的灯会闪烁相应的次数,提示当前模块的方向,并且永远保存该方向作为模块的方向,用户还可以通过地面站的数据查看当前模块是哪个方向。如下图

当前为方向向右的模块。

- 5)模块在检测距离时,检测到物体时,模块的灯会常亮;如果障碍物距离较远,模 块检测不到时,模块的灯会不断闪烁,提示不能检测到物体。
- 6)连接成功好,模块在上电时会闪烁几次,再熄灭,初始化完成时再常亮。
- 7)安装飞控时,应防止桨叶、机架对信号的干扰。
- 8)由于模块是收发一体的模块,因此有 40cm 的盲区,但在小于 40cm 时,默认为 40cm
- 9)数据查看只能查看水平方向的距离,当没有距离显示时,可能模块的当前方向向上,需要通过日志才能查看向上的方向。

功能二: 向上防撞

1. 数据查看

向上防撞和避障功能一致,但需要通过按键来设置模块的方向为向上。当当前为向前时,按一次按键,模块的灯快闪几次,并且通过地面查看的数据如下图时:

说明当前模块为向上防撞。上图是只接向上的模块显示,但同时再接向前避障模 块时还是会有距离实时跳动。

由于数据查看窗口只能查看水平方向的距离,因此查看向上模块的数据时, 需要通过日志才能查看向上模块的数据。 具体操作如下:

1)日志下载

通过地面站连接飞控,连接后进行如下操作,进行日志下载

点击要查看的日志,并点击下载这些日志进行下载选中的日志

Log files:	Output:	
1 2000/1/1 8:05:58 (76439) 2 2018/9/25 14:10:32 (87483) 3 2018/9/25 14:11:50 (156839) 4 2018/9/25 14:16:00 (2037704) 5 2018/9/25 14:28:04 (1572207) 7 2018/9/25 14:28:04 (1572207) 7 2018/9/25 14:11:28 (2482232) 8 2018/9/25 16:14:28 (7658312) 9 2000/1/1 8:16:48 (90112) 10 2000/1/1 8:00:20 (180224) 11 2000/1/1 8:00:56 (567832)	Getting list of log files Found 12 log files, note: item sizes are just an estimate.	*
下载全部日志第一人称IML		
下载这些日志重建IML		
清空日志 , bin 转 .log		÷
	NOTE: When posting support querys, please send the .bin file	e

2)日志查看

通过下图步骤打开日志文件 点击回顾日志,然后打开要打开的日志

按1、2步骤进行操作

Log Brown	ser - 10 2000-1-1 8-00	0-20.bin	COMPANY OF A CARD	0.0000.0											25
						Val	ue Graph								
4.0	KIDUDI Ale: 1 Max: 4 Mean: 2)														
3.6															
3.0															
w 2.8															
			8000092485849	5117 31323634 gament com	vete Ut sit alignment complete	1		i	1		1			(,	
			200 00000 000200	Ut initial yaw alignment comple	te MUC tit signment complete			3000			4000				500
							Line Number								
住在制绘制	这些数据 清除图	日表 加载	日志	🔲 显示地图 📗	🗌 Use Time 🛛 None		•	💟 Mode 🛛 Erro	rs 💟 MSG						
-2	-1	0	Type	Length	Nune	Format	Columns						<u>^</u>	INU	-
0	0001-01-01 0	FMT	128	89	FNT	BBnNZ	Type	Length	Nane	Format	Columns		H 8.	MAG	
1	0001-01-01 0	FMT	129	31	P AEM	QNE	TimeUS	Hane	Velue					MODE	
2	0001-01-01 0	FMT		46	GPS	QBIHBcLLefffB	TimeUS	Status	GNIS	GYIR	NSatz	HDop	1 ē.	MSG	
3	0001-01-01 0	FMT	131	46	GPS2	QBIHBcLLefffB	TimeUS	Status	GNS	GWIR	NSatz	HDop		NGP2	
4	0001-01-01 0	FMT	132	46	GPSB	QBIHBcLLefffB	TimeUS	Status	GNIS	GYIK	MSats	Юор		NKF3	
5	0001-01-01 0	FMT			GPA	QCCCCBI	TimeUS	VD op	HAce	VAcc	SAcc	vv	i ă,	NRP5	
6	0001-01-01 0	FMT	194	24	GPA2	QCCCCBI	TimeUS	VDop	HAce	VAcc	SAce	vv		NEF6 NEF7	
7	0001-01-01 0	FMT	195	24	GPAB	QCCCCBI	TimeUS	VDop	HAce	VAcc	SAcc	vv		NEFS NEFS	
8	0001-01-01 0	FWT			INU	QEFEFEFIIEBBHK	TimeUS	GyrX	GyrY	GyrZ	AccX	AccY	i ii	NEQ1	
9	0001-01-01 0	FWT	134	75	NSG	QZ	TimeUS	Nessage						NKQ2 NKT1	
10	0001-01-01 0	FMT			RCIN	рюнононони	TimeUS						- ē	NET2	
11	0001-01-01 0	FMT	136	39	RCOV	Q1000000000K	TimeUS	C1	C2	сз	C4	cs 1	- ÷	PR PN	
12	0001-01-01 0	FMT					TimeUS	RIRSSI						PONR	
13	0001-01-01 0	FMT	139	37	BARO	QffcfIff	TimeUS	Alt	Press	Temp	CR1	SNS	11	TimeUS	Ξ
14	0001-01-01 0	FMT	140	21	POWR	Q£EH	TimeUS	Vec	VServo	Flags				DO	
15	0001-01-01 0	FWT	143	45	CND	QHOREEEEEE	TimeUS	CTot	Chun	CId	Prel	Prn2		D45	
16	0001-01-01 0	FMT	144		RAD	QBBBBBHH	TimeUS	RSSI	RenRSSI	TxBuf	Noise	RenNoise		D135	
17	0001-01-01 0	FMT	146	43	CAM	QIHILeeeccC	TimeUS	GPSTime	GPSNeek	Lat	Ing	Alt	1 1	D180	
18	0001-01-01 0	FWT	232	43	TRIG	QIHLLeeeccC	TimeUS	GPSTime	GPSNeek	Lat	Lng	Alt 📿		D270	
19	0001-01-01 0	FWT	162	30	ARSP	QffcffB	TimeUS	Airspeed	Diffress	Temp	RawPress	Offset		₩ DUp	
20	0001-01-01 0	FWT	164	45	CURR	Qfffe00000K	TimeUS	Volt	Curr	Currlot	Tenp	V1		CAn CDis	
21	0001-01-01 0	FWT	165	45	CUR2	Qfffe)00000(TimeUS	Volt	Curr	CurrTot	Tenp	V1		RATE	
22	0001-01-01 0	FMT	163	27	ATT	QccccCCCC	TimeUS	DesRoll	Roll	DesPitch	Pitch	DesYaw	- 0	RCOV	

最后3箭头所指的数据即向上模块的检测到物体的距离。

2. 向上防撞距离设置

按照前面的方法设置 AVOID_MARGIN(防撞距离)的值即可。

向上防撞功能可以在定高和留待模式自动打开,不需要遥控器开关进行控制,需要关闭时,可以设置

功能三: 定高功能

1. 安装说明

模块朝下面方向安装

1.1 连接 PIXHAWK

用 4pin 的线一端连接 pixhawk 的 I2C 口,另一端连接模块,如下图所示:

1.2 直接连接 MINIPIX

用 4 条连接线的 4Pin 对 6pin 的线, 4pin 端连接模块, 6pin 端连接飞控, 如下图 所示:

1.3 通过 I2C 扩展板连接 minipix

用 4Pin 对 4pin 的线,一端连接模块,另一端连接扩展板,如下图所示:

2. 配置说明

进入-初始设置界面,点击左侧可选硬件,再点击声呐,在右侧会出现声呐界面。在右侧的 选框中,点击下拉,选中"MaxbotixI2C"或者"LightWareI2C",如下图所示:

不需要保存,重启飞控后,再回到这个界面,会出现模块的距离时,代表设置成功

RNGFND_MAX_CM 设置为 450, RNGFND_MIN_CM 设置为 43(单位: cm) RNGFND_MAX_CM 是飞控在定高模式下能识别模块的最大距离 RNGFND_MIN_CM 是飞控在定高模式下能识别模块的最小距离 当模块发送的距离超过 43~450cm 时,飞控不识别模块的距离,通过气压计的高度来进行定 高

地面站报错

1. 地面站提示: Bad LiDAR Health,如下图所示:

上图代表超声波异常,可能的原因为

- 1) PRX_TYPE 值设置错误
- PRX_TYPE 值已经设置为 2,但 SU04 没连接。如果要关闭 SU04,可以设置 PRX_TYPE 为 0。
- 3) SU04 模块连接错误
- 2.地面站提示: PreArm: Proximity X deg, 0.40m, 如下图所示:

上图代表 X 度的 SU04 检测的距离小于 60cm,因此飞控不给解锁,需要把飞行器远离障碍物大于 60cm 才能解锁。